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Abstract. It is proved that the Stark-Wannier states, as functions of the electric field, are 
analytic in a disc tangential to the real axis at the origin, with asymptotic expansion to the 
second order which coincides with the Wannier approximation up to the first order. 

1. Introduction 

We consider the motion of an electron in a one-dimensional crystal, under the action 
of an external uniform electric field of strength F. 

For this problem Wannier (1960, 1969) obtained, by means of the approximation 
of the decoupled bands, bound states distributed along ladders and linear in F. 

This suggests that the actual problem admits metastable states related to resonances 
(called Stark-Wannier states) as has been proved in some particular cases (Agler and 
Froese 1985) for large values of E In the case of sufficiently singular potentials, such 
as the Kronig-Penny ones with distributions of the 6 type, it is believed that one can 
have actual bound states (see Bentosela et a1 1985, Berezhkovskii and Ovchinnikov 
1976, Ferrari et al 1985). 

Avron (1979) has proved that for complex values of the field there exist ladders 
of eigenvalues which will also be called Stark-Wannier states. The numerical analysis 
of the states (Ferrari et al 1985) has suggested that they are analytic in F in a region 
of the complex plane. Such states, as functions of F, should exhibit couples of branch 
points of the Bender-Wu type due to crossings (Bender and Wu 1969, Ferrari et al 
1985) which accumulate asymptotically at the origin in real directions. The numerical 
analysis agrees with the conjecture that resonances exist for small F >  0 and are the 
limits of these states as 3 F + 0. Because of such crossings, avoided crossings arise for 
the resonances, and they have been studied by Avron (1982), Bentosela et a1 (1982a, b)  
and Ferrari et a1 (1985). 

In this paper we prove that the Stark-Wannier states are analytic in a disc tangent 
to the real axis at the origin and are radially asymptotic up to the second order with 
an expansion which extends the Wannier approximation. 

Moreover we extend the existence result at complex field by Avron (1979) to 
potentials infinitesimally small with respect to the kinetic energy in the sense of the 
forms, thus including the distribution potentials of the type of the Dirac delta. 

t Partially supported by Minister0 della h b b l i c a  Istruzione. 
11 Present address: Dipartimento di Matematica, Universita di Bologna, 1-40127 Bologna, Italy. 

0305-4470/88/163321+ 11s02.50 @ 1988 IOP Publishing Ltd 3321 



3322 F Bentosela et a1 

The results are obtained using the crystal momentum representation ( C M R ) ,  per- 
turbation theory, operator techniques and the method of the asymptotic expansion for 
a saddle point. The expansion to the second order obtained here can be used as an 
improvement on the Wannier approximation for the resonances. 

In P 2 we prove the existence and the analyticity of the Stark-Wannier states for 
F in a disc tangent to the real axis at the origin. In 9 3 we prove the asymptotism of 
a power series expansion truncated to the second order, which coincides with the 
Wannier approximation up to the first order. 

2. Analyticity of eigenvalues 

Hypothesis 2.1. Let V be a real tempered distribution, invariant under translation by 
21r. Let the corresponding symmetric quadratic form y (  4, J,) = V (  &$), with 4, J, E 
Cr(R), satisfy the following condition: 

Under the above hypothesis there exists a unique self-adjoint operator, denoted by 
HB = -dZ/dx2+ V obtained by the K L M N  theorem (Reed and Simon 1975, p 167) such 
that 

Moreover HB and p 2  = -d2/dxZ have the same form-domain. HB will also be called 
the Bloch operator. From (2.1) it follows that HB is bounded from below. Without 
loss of generality from now on we shall suppose that HB is positive. Periodic potentials 
V E &( R) are contained in the above class of hypothesis 2.1 since, as multiplication 
operators, they are infinitesimally small with respect to -dz/dx2 (see Reed and Simon 
1978). Another example is given by the Kronig-Penny model, with V=ZjjeZ a,,, 
where aU,(4) = 4 ( 2 j r ) ,  V 4  E C?(R) (Reed and Simon 1975, p 168). 

Lemma 2.2. Let V satisfy hypothesis 2.1. For F E  C, S F  # 0, let 

HF4 = HB4 + F x ~  V 4  E CF( R). 
Then there exist a(  F )  > 0 and b( F )  > 0 such that 

IIHF4112+a(F)I(4 11’ b(F)(IIHB4 [ I 2 +  11x4 1 1 2 )  V 4  E CF(R). (2.2) 
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To obtain (2.2) we notice that, by hypothesis 2.1, as quadratic forms on CT(R)x 
CF(R) we have: 

2 p ~ a - ’ p ’ + a S  H B + b l S j H i + b z  

for some a, 6 ,  , b2 > 0. 

Lemma 2.3. Let FE  C be fixed with 3F # 0. Then HF defines a closed operator on 
the domain D( H F )  = D(HB) n D(x), with compact resolvent satisfying 

where OF = { z  E C: % z  2 cot( 6)3z} is the numerical range of HF and e = arg( F ) .  

ProoJ Since HB is positive, HE+ Fx has numerical range in the above half-plane OF. 
In order to show that HF has compact resolvent, we decompose it in the sum ( 1 - v ) p 2  + 
Fx+B,,where l > V > O , a n d  B , = T ~ ’ + V .  

By hypothesis 2.1 B, is well defined and its domain contains D(pz) n D(x).  By the 
closed graph theorem it is relatively bounded with respect to (1 - v ) p 2 +  Fx, and 
choosing 77 sufficiently small, the relative bound is much less than 1. Therefore by the 
usual resolvent formula, since (1 - 7 ) p 2  + Fx has compact resolvent (Herbst 1979) HF 
has compact resolvent too. 

Finally (2.3) follows immediately since HF is accretive (up to a phase factor). 

Remark. By the unitary translation ( T2,,4)(x) = 4(x+27r)  we have T,,HFTTJ = 
HF+ 27rF. Thus, if a( HF) is not empty, it consists of ladders of the form {Eo+ 2 j ~ r F } , ~ ~ .  

Let P,, denote the (orthogonal) projection onto the subspace R,,, such that the spectrum 
of the restriction of HB to R,, is just the nth band [a,,, p,,] .  Then we set PL = 1 - P,, and 

HF.1 = PIHFPI 

H k . 1 ~  P;HFP; (2.4) 
w, = P I X P ;  + P‘,xP, 

whence H F  = HF,, + H;,, + FW, . 
HF,, is the Stark-Wannier operator relative to the band [ a , ,  PI],  with a spectrum 

given by the ladder of simple eigenvalues { A ,  + 2 7 ~ F j } , ~ ~ ,  where A,,, n = 1,2 , .  . . , is the 
mean value of the band function & ( k )  (described below). Its numerical range is 
contained in the strip 

{Z E c :  CY, s % Z  - zz cot e s p, ) .  

{ Z  E c: a2 c !XZ - 2 z  Cot e ) .  
H;,, has compact resolvent and numerical range in the half-plane 

Lemma 2.4. The operator W ,  defined in (2.4) is bounded. 

Roo$ We have W, = [ P I ,  x]P;  + P{[x, PI]. Now, from the proof of lemma 2.2 it 
follows that V a  > 0, V p  E C;(R) 

1 
KP, [HB,xlP) Is -p> &9)+a(9 ,  9). (2 .5 )  



3324 F Bentosela et a1 

Thus (2.5) holds Vp E Q( HB), the form domain of HB. Choosing $ E Range(HB - z), 
with z& a(HB) (z E R for simplicity), let cp  = (HB - z ) - ' $ .  Then (2.3) implies: 

I( ( HB - z ) - I $ ,  [ HB 9 XI( HB - z ) - ' $ ) I  

Hence 

[x, p1]=-(2Ti)- '  (Hg-Z)-'[Hg, X](HB-Z)-' dz 
fr ,  

is bounded on Range( HB - z), which is dense. Therefore W, is bounded too. 

In the following L,  will denote the norm of W,. Notice that the proof of lemma 2.4 
can be given in a much simpler way within the crystal momentum representation (see 
0 3). 

Theorem 2.5. Let V satisfy hypotheses 2.1 and 3.2. Consider the nth isolated band of 
the corresponding Bloch operator HB, with isolation distance 28,. Then there exists 
E ,  > 0 such that for F E  BCn(kn)  = { z  E C:  ) z  - is, \  < E , }  the operator HF has exactly one 
ladder of eigenvalues lying within the strip 

(2.6) s, = { Z  E c: a,  - 6, + 3~ Cot e < % Z  < pn + S, + 
Such eigenvalues, as functions of F, are analytic in BJi&,). 

Cot e). 

Pro05 For simplicity, let n = 1 and 2 S , = a 2 - P l = 2 S .  Let H F ( P ) = H F - ( l - P ) F W I .  
Consider the lines a ,  - S + 5 z  cot 8 = % z  and PI + 6 + 9 z  cot 8 = %z. 

We want to show that they are contained in the resolvent set of HF(P) uniformly 
in p E [0, 11, for all F E  BJie,). 

This implies that the first Stark-Wannier ladder does not go out of the strip SI and 
no other ladder enters the strip when P varies in [0 ,  11. 

Let us now consider HF(P) for fixed F: it represents an analytic family of type A 
on the whole complex plane with HF( 1 )  = HF and HF(0) = HF,' + Hb.'. Indeed 

H F ( P ) = H F . I + H ; , I + P F W ~  (2.7) 

by (2.4) and the definition of HF(P). Now we want to estimate the resolvent as follows: 

1 1  ( HF(P - Z ) - '  1 1  = 1 1  (HF(O) - Z1-I  ( 1 FP WI ( HF(O) - Z ) - I  ) 1 1  

for all F such that 
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uniformly for z in the above quoted lines. In order to prove (2.8) we use the decompo- 
sition 

l l ~ ~ F = ( o ) - z ) - l l l  II(HF.1-z)-III+ l l ( ~ k , l - z ) - l l l  
L 

6- (2.10) 
S sin 8 

if z belongs to one of the two lines considered above. In fact the distance of z from 
the numerical range of HF,I(Hk,l) is not less than S sin 8. 

= (6/4&) (a  simple 
application of the sine theorem to the right triangle constructed by the vectors F and 
2ic1 in the complex plane). 

The eigenvalues of HF@) (an analytic family of type A) are continuous in p 
(counting multiplicity). 

On the other hand, notice that not only H F ( l ) ,  but also HF(P), /3 E [0, 13,  has 
invariant discrete spectrum with respect to translation by 27rF, since W ,  commutes 
with a translation by 27~.  

Thus we can consider the spectrum on a cylinder defined by C/27rF; then in the 
region S1/277F we find just one eigenvalue for p = 0. Now from the norm-continuity 
(in p )  of the resolvents and from the bound (2.8) on the boundary of Sl/27rF there 
is still a unique isolated eigenvalue for any p E [0, 11. Therefore there exists a unique 
eigenvalue E l ( F )  near the eigenvalue A I  of HF,], for any F in the disc Bel(i&,). 

Since IfF is an analytic family of type A, the eigenvalue E,(F) is analytic as long 
as it is isolated, and the theorem is proved. 

Now notice that inequality (2.9) defines the ball BF,(iEI) for 

3. Asymptotics 

From the above obtained analyticity of the eigenvalues in a disc we can now prove 
the existence of an asymptotic perturbation expansion up to the second order for the 
eigenvalues. Such an expansion coincides, up to the first order, with the Wannier 
approximation under the following further assumption. 

Hypothesis 3.1. We assume that V satisfies the parity condition 

Vcp= V+ if 44x1 = cp(-x) vcp E C,"(R) Vx E R. (3.1) 
We note that the perturbation expansion cannot be simply obtained by the Rayleigh- 
Schrodinger method, since there is no unperturbed eigenvalue. Hence the problem 
compels us to choose the Wannier approximation, i.e. the decoupled band approxima- 
tion as an unperturbed model. 

To this end we have to introduce the crystal momentum representation ( C M R )  

(Bentosela 1979, Blount 1962), which we now briefly recall. 
We consider the unitary transformation U : L'( R)  + X defined by ( U+)( k, K )  = 

q ( k ,  K ) =  + ( k + K ) ,  where 6 denotes the Fourier transform of +. The sequence 
{cp(k, K ) } K E Z  belongs to Z ( k )  = Z2, for almost all k e  B, where B is the torus R / 1  
called the Brillouin zone, and %= %'( k )  dk. 

Then we obtain 

U H B U - ' =  H ( k ) d k  I: (3.2) 
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where 

( H ( k ) a ) ( K )  = ( T ( k ) a ) ( K ) + ( p a ) ( K )  

= ( k + K ) * a ( K ) +  C V , a ( K - j )  (3 .3)  
J E Z  

for any a ( K )  of the form a ( K )  = p(k, K )  = ( U + ) ( k ,  K )  for some $ E  D(H,). Here V, 
denotes the j th  Fourier coefficient of V: V, E R by hypothesis 3.1. 

is infinitesimally small in 
the form sense with respect to T ( k ) ,  k E B, exactly as V is with respect to -d2/dx2 
(hypothesis 2.1). As a consequence, H ( k )  has compact resolvent as T ( k )  (see theorem 
XIII.68 of Reed and Simon (1978)) and it is bounded from below. We shall suppose 
it is positive for any k E B. 

Then for any k there exists a sequence of eigenvalues OS E , ( k ) s  E 2 ( k ) s . .  . S  

E , , ( k ) s . .  .with orthonormal eigenvectors { O J \ ~ ) ( K ) } , ~ ~ ,  . . . , { W ! , ~ ) ( K ) ) , ~ ~ ,  . . .. 

Notice that %’( k )  is an analytic family of type A in k. 

Hypothesis 3.2. We assume that the eigenvalues E,( k )  of T (  k )  + are simple. 

This means that all the gaps (P,,,  are non-empty (about such a hypothesis see 
theorem XIII.91 of Reed and Simon (1978)). Such eigenvalues, as function of k, are 
called band functions and they are analytic, even and periodic with period one and 
they are strictly monotone in [0, f]. In particular in the open interval (0, f) the derivatives 
of E , , ( k )  are positive for n odd and negative for n even (Reed and Simon 1978). We 
have a, =mink E , ( k ) ,  Pn = maxk E, , (k ) .  

We now define 

A, = ( E , , ) =  E , , ( k )  dk. I, (3.4) 

Since V, = V - ,  E R VK E 2, the set of real-valued functions is left invariant by H ( k ) .  
Thus we can restrict ourselves to considering only real-valued eigenfunctions wLk) of 
the real eigenvalues E,, ( k ) ,  without loss of generality, with the property that wkk’( K )  = 

Moreover, since H ( k )  is analytic of type A, we may assume that each w‘,“’ is a 

Now it easily follows that 

W : - k ’ ( - K ) .  

vector-valued analytic function. In particular there exists aw ik ) /ak  E 1 2 .  

( ohk), - $ ) , 2  a w ( k )  = -(wink’, Vn ,  m E N V k  
12 

by normalisation. In particular 

A sequence b E l 2  can be written 
m 

b ( K ) =  a , ( k ) w ‘ , ) ( K )  
m = l  

(3.5) 

where 

a , ( k )  = 2 w‘,)(K)b(K).  
K € Z  
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A unitary transform fi : L2( R)  + 0 =, 2, , where 2, = L2( B)Vm,  is defined by 

( f i + ) m ( k ) =  w' ,k 'c i ) (U+)(k , j )=(w' ,k ' ,  ( w ) ( s .  (3.6) 

Notice that fi is unitary since fi-' is defined on @:=,%',_by (3.5) with b ( K ) =  
( U $ ) ( k ,  K ) ,  and j21+(x)12 dx  = 

j e Z  

j B  la,(k)12 dk if a,  = ( U + ) , .  
Let us consider the unitary transformation of HF given by 

fiF = fiHF fi-' = fiB+ Ffixfi-'. (3.7) 
Formally, we have 

fiF= fiB+ FX+iFD (3.8) 
on the elements a =(a,), of 
number of a ,  is not identically zero, where 

such that a ,  E C ' ( B )  V m ,  and only a finite 

(3.9a) 

(3.9b) 

(3.9c) 

with 

= - X , , , ( k ) = - X , , , ( - k ) .  (3.10) 

Let us consider fi, and the corresponding Stark- Wannier approximation fiB + iFD, 
which corresponds to neglecting the FX term connecting different bands. 

The operator fiB+iFD acts in the space O z = , X ,  the following way: 

I 2  

The eigenvalue problem for (3.11) 

f iBa + iFDa = Aa 

where a = { a m } m e N ,  can be separated: 

V n  E N. aa ( k )  
ak 

E , (  k )a , (  k )  + iFA = ha,( k )  

The solutions are of the form 

a , ( k )  = c, exp ((iF)-' i k  ( A  - E,(r ) )  d r )  
-1/2 

(3.11) 

(3.12) 

(3.13) 

with the condition that a , ( k )  be a function defined on the torus B :  a,(  -4) = a , ( + ) ,  i.e. 

A =A, , ,  = {-1,2 E , ( k )  dk+27rjF V j  E 2. (3.14) 
I /2  

The eigenvectors are given by 
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We split the interband operator X into two terms: 

x = ow, 0-' + ( X  - ow, F). 
Gl = owl fi-' contains the interband terms between the first band and the others. 
X '  = X - @, contains the interband terms between all the bands except the first one. 
With this notation fir, can be written as: 

fiF = fiB+ i FD + FX'+ F G 1 .  

We set 

H(F,  q ) =  fi ,+iFD+FX'+77@l. (3 .16)  

We now consider T%', as a perturbation of fi, + iFD + FX', the spectrum of which 
contains the set { A , , , } .  The eigenvalues of H(F, 77) are given by 

E(F ,  77) = c C n ( F ) 7 7 "  
n = O  

a convergent expansion with convergence radius E ,  > 0 independent of F( E ,  = 
S/(411 Wll/), where 28 is the isolation distance of the first band as in 3 2 ) .  Such a series 
is calculated by the usual perturbation formalism: setting R, = (H( F, 7) - z ) - ' ,  for 
fixed FE  BE,(iEl) such that 0 < 8,6 arg( F) = 8 S O2 < 7r for I FI sufficiently small, the 
expansion is given by v(Z:=o U , , ( F ) ~ " ) ( Z ~ = ~  bfl(F)Tn)- ' ,  according to the usual 
formulae: 

(CP,  (-@iRo)"+'$)dz ( 3 . 1 7 ~ )  

(cp, Ro(- @lRo)n$) dz. (3.17b) 

while $ is given by (3.15) for 

I 
f 

a,(F)  = (27ri)-' 

b,(F) = -(27ri)-' 

l A i , o - z I = I F l ~  

/ A  I .o -Z I= I  Fl T 

Here the scalar products are in the space 
n = 1 , j  = 0, up to a constant factor the following way: 

($(k))m = S ; l  exp(- ig(k) /F)  
k 

=S?exp(  - i /F[-k(Al-El(T))dT) (3.18) 

where E is the positive value such that E , (  E )  = A , . Notice that g (  k) > 0, Vk # - E, and 
g ' ( - E )  = 0 since E , ( k )  is an even function; also II$II 6 1. Finally 

(cp(k))m = 8;" Vkc B. (3.19) 

Consider ( 3 . 1 7 ~ )  for n even. We have 

(cp, @IRo( @,Ro@IRo)'$) dz a , , ( F )  = - ( 2 ~ i ) - '  P / A  1.0- z l  =I  Fl ~i 

(cp, PI W I R o P ;  
l A ~ , o - z l = l F I ~  

(3.20) 

because Ro commutes with both PI and PI,  while PI @,PI = PI @,PI = 0 (Pl + PI = 1). 
It follows that a2 , (F)  = 0, Vr E N, since in the above product a factor PIPl = 0 appears. 

I = -(27ri)-' 

x (PI @,P;R0PI @lPIRoPl)r$) dz 
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In full analogy it turns out that b2,+l( F )  = 0. For the remaining non-zero terms the 
following estimates hold: 

(3.21) 

In fact PIRoPl  = P , ( E , + i F D - z ) - ' ,  where ( E , a ) , ( k )  = 6 ~ E l ( k ) u l ( k ) .  Moreover the 
numerical range of P { H B P {  has distance from A I  greater than 26 sin 6 (at least for IF1 
small), so that PiRoP' ,  is bounded by (26 sin e) - ' .  Furthermore / ) P I R o P I / /  s 2)FI-', 
since PIRoPl  admits a spectral representation in terms of the projections PI,, relative 
to the ladder {Al , j }JEZ = { A ,  + 2 ~ F j } , ~ ~ ,  with Z J E Z  PI,, = P I .  

The estimates (3.21) follow, since both the vector + and the operator 6'' are 
uniformly bounded, and the length of the path is given by 27r21FI. 

Let us consider now the asymptotic calculus of u , ( F ) :  

u , ( F )  = ( 2 ~ i ) - '  $ ((c, @ I P : R o P ;  @lRo+) dz (3.22) 
I A l - r / = / F l n  

where R O + = ( A l - z ) - ' $ .  
By the residue theorem 

(3.23) 

Now, 

~uI(F)+(P~(H(O,O)-AI)-'P;@I(~, @I$)/ = O ( F )  (3.24) 

since JJ(H(F, 0) - H(O,O))ul l=  O ( F )  for fixed U E D(H(F, O)), whence the strong resol- 
vent convergence, with rate of convergence O ( F )  on the vector Glcp. 

We note that 

( P i ( H ( O , O )  -AI)- lp;  @lcp, @I*) 

Since - E  is the only point of minimum of g (k )  we can evaluate the asymptotics of 
(3.25) by the saddle point method (Olver 1974, p 127). It turns out that (3.25) has the 
following behaviour: 

By combining (3.24) and (3.26) we obtain 

(3.27) 

Similarly, 

b o ( F )  = I, exp( -ig( k ) / F )  dk = F'/' ( - 2.rr ) " 2 + O ( F 3 ' 2 ) .  (3.28) ig"( -E )  
Notice that the estimates and the asymptotic behaviours given above are uniform in 
any angular sector of the form larg( F )  - .rr/2/ s Bo < .rr/2. 
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In the case F = 7, in any such angular sector we have 

E ( F ,  F )  = A , + F 2 [ a l ( F ) ( b o ( F ) ) - 1 + O ( F 1 ' 2 ) ]  

= A I  - F2 C I (  *I( - 6 ) )  l,m12( Em( - E )  - A I ) - '  + O( F5'2) .  (3.29) 

Notice that the coefficient of F 2  is negative, according to the numerical calculation 
performed in Ferrari et a1 (1985, p 5826). Moreover ( 6'l(k))n,, is an odd function of 
k as is X,,,(k)Vn, m and, since E m ( k )  is even for any m, - E  can be replaced by E in 
(3.29). The above results can be summarised as follows. 

m f l  

Theorem 3.4. The Stark-Wannier eigenvalues E , , ( F ) ,  n E N,j E 2 of HF= -d2/dx2+ 
V +  Fx are analytic in some disc BEn(iEn), E,  > 0 and they admit asymptotic expansion 
in powers of F, up to the second order, whose linear part coincides with the 
Wannier expression 

where E,, > 0 is defined by E,,(E,,) = A,,. Here 6',, = fiW,,fi-', W, = P,,xPL + PLxP,, and 
P,, is the projection defined in B 2. For all n a n d j  (3.30) holds uniformly in any sector 
larg(F) - 7~/21 s eo< ~ / 2 .  

Remark. This result gives a precise meaning to the Stark-Wannier approximation in 
terms of the asymptotic behaviour (3.30) in complex directions. 

We can construct a formal perturbation theory in F of the band functions by a 
diagonalising unitary multiplication operator of class C'( B )  formally defined by a 
series. 

More precisely one looks for S ( F ,  k )  = exp[iFA(F, k ) ]  and E(F,  k ) ,  where A(F, k )  = 

XF=o F"A,,(k), A,,(k) is a symmetric matrix, and (E (F ,  k)) , ,m = a,,,, e, , ,(k)F" such 
that 

fi, = fi, f Fx + iFD 

= S(F, k ) [ & ( F ,  k)+iFD]S-'(F,  k )  

(3.31) 

Equality (3 .31)  is meant to hold to all orders in F (compare with Avron (1982, p42));  
for a wider discussion of the band perturbation see Nenciu and Nenciu (1981, 1982). 

References 

Agler J and Froese R 1985 Commun. Math. Phys. 100 161 
Avron J 1979 J.  Phys. A: Math. Gen. 12 2393 
- 1982 Ann. Phys., N Y  143 33 
Bender C M and Wu T T 1969 Phys. Rev. 184 1231 
Bentosela F 1979 Commun. Mafh.  Phys. 68 173 
Bentosela F, Grecchi V and Zironi F 1982a J.  Phys. C: Solid Stare Phys. 15 7119 
- 1982b Phys. Rev. Left. 50 84 
- 1985 Phys. Rev. B 31 6909 



Stark- Wannier states 3331 

Berezhkovskii A M and Ovchinnikov A A 1976 Sou. Phys.-Solid Stare 18 1908 
Blount I E 1962 Solid State Physics vol 13 (New York: Academic) 
Ferrari M ,  Grecchi V and Zironi F 1985 J. Phys. C: Solid State Phys. 18 5825 
Herbst I 1979 Commun. Math. Phys. 64 279 
Nenciu A and Nenciu G 1981 J. Phys. A :  Math. Gen. 14 2817 
- 1982 J. Phys. A :  Math. Gen. IS 3313 
Olver F W J 1974 Asymptotics and Special Functions (New York: Academic) 
Reed M and Simon B 1975 Methods of Modern Mathematical Physics vol 2 (New York: Academic) 
- 1978 Methods of Modern Mathematical Physics vol 4 (New York: Academic) 
Wannier G H 1960 Phys. Rev. 117 432 
- 1969 Phys. Rev. 181 1364 


